Domain: AI/ML model development, data mining, and reproducible machine learning pipelines. Focused on MCP (Modal Context Protocol), A2A (Agent-to-Agent) workflows, and large language model acceleration with vLLM.
Project Overview: This repository contains Python and PyTorch example projects for AI/ML, demonstrating best practices for data preprocessing, model training, evaluation, and deployment. Designed to be clear, reproducible, and modular, supporting both local execution and cloud-based environments (e.g., Google Colab). MCP is applied for context-aware modeling and advanced AI workflows, enabling models to leverage modal context efficiently in both training and inference.
HelloPython-AI-ML/
├── examples/ # Example projects
│ ├── hello_world/ # Basic "Hello, World!" ML example
│ │ ├── main.py
│ │ └── README.md
│ ├── mcp_pipeline/ # Modal Context Protocol implementation example
│ │ ├── train.py
│ │ ├── inference.py
│ │ └── README.md
│ ├── a2a_agent/ # Agent-to-Agent workflow example
│ │ ├── agent.py
│ │ └── README.md
│ ├── vllm_example/ # Large language model acceleration
│ │ ├── llm_inference.py
│ │ └── README.md
│ └── ... # Additional examples
├── data/ # Datasets for experiments
├── notebooks/ # Jupyter / Colab notebooks
├── tools/ # Utility scripts, preprocessing helpers
├── README.md # General repo overview
└── requirements.txt # Python dependencies
- Python 3.10+: https://www.python.org/downloads/
- PyTorch: https://pytorch.org/get-started/locally/
- vLLM: https://vllm.ai/
- Jupyter/Colab (optional, for notebooks)
- pip / virtualenv: For managing dependencies
Create a virtual environment and install dependencies:
python -m venv venv
source venv/bin/activate # Linux/macOS
venv\Scripts\activate # Windows
pip install -r requirements.txt
Navigate to the example project:
cd examples/mcp_pipeline
python train.py
python inference.py
Or run notebooks directly in Google Colab:
# Upload notebooks/ to Colab or open directly via Google Drive
All relevant references for Python AI/ML development:
- Python Documentation: https://docs.python.org/3/
- PyTorch Documentation: https://pytorch.org/docs/stable/index.html
- PyTorch Tutorials: https://pytorch.org/tutorials/
- PyTorch Resources: https://pytorch.org/resources/
- vLLM Docs: https://vllm.ai/
- Data Mining Principles & Best Practices: https://www.kdnuggets.com/
- MCP (Modal Context Protocol) Concepts: internal design references for context-aware modeling and advanced AI workflows
- A2A (Agent-to-Agent) Concepts: design references for agent-based communication and autonomous workflow integration
- Follow enterprise-grade coding principles (clarity, testability, maintainability).
- Keep examples modular, reproducible, and documented.
- Ensure consistent project structure and naming conventions.
- Add detailed comments for clarity and reproducibility.
cd examples/vllm_example
python llm_inference.py