In this project I used classification algorithms for analysis of avila dataset.
- Logistic Regression
- Gradient Boosting
- Random Forest
- XGB Boost Also, in this project i used halving search cv for hyperparameter optimization.
The Avila data set has been extracted from 800 images of the 'Avila Bible', an XII century giant Latin copy of the Bible. The prediction task consists in associating each pattern to a copyist.
Dataset consists of 12 attributes
- no
- intercolumnar distance
- upper margin
- lower margin
- exploitation
- rownumber
- modular_ratio
- interlinear_spacing
- weight
- peak_number
- modinter_ratio
- category
For the Turkish report, you can visit: https://medium.com/@seherkutluu/avila-bible-veri-seti-i%CC%87nceleme-s%C4%B1n%C4%B1fland%C4%B1rma-ve-tahmin-e223caa150be